korean english


Home > 게시판 > 세미나

Brookhaven National Laboratory의 Christopher Homes교수님을 초청하여 아래와 같이 세미나를 개최합니다.

학과 구성원 여러분의 많은 참석을 부탁 드립니다. 


아 래


제목: Optical properties of iron-based conductors and superconductors


연사: Prof. Christopher Homes (Condensed Matter Physics and Materials Science Dept., Brookhaven National Laboratory) 


일시: 2014. 4. 21(월) 오후 2:00 ~ 4:00


장소: 삼성학술정보관 7층 Creative learning room


초록: In the high-temperature cuprate superconductors, only a single band is observed at the Fermi level; as a result the optical conductivity may be modeled using a single free-carrier component.  In a simple metal the Drude model usually sufficient; however, electronic correlations and electron-boson coupling in the cuprates require a more generalized form in which the scattering rate and the effective mass are both frequency dependent [1].  The iron-based conductors and superconductors are multiband materials with several bands crossing the Fermi level, resulting in multiple hole and electron pockets at the center and corners of the Brillouin zone, respectively [2].  The presence of multiple bands requires, at a minimum, a “two-Drude” model in which the electron and hole pockets are treated as separate contributions [3]. In general, the two-Drude approach reveals: (i) a strong component associated with the hole pocket with a large scattering rate (nearly incoherent transport) that is essentially temperature independent; (ii) a weaker component associated with the electron pocket whose scattering rate has a strong temperature dependence.  Some recent results using this approach in the pnictide materials BaFe2As2 (TN~138 K) and Ba0.6K0.4Fe2As2 (Tc~38 K) [4] will be discussed, as well as some preliminary findings the iron-chalcogenide systems, Fe1+Te (TN~68 K) and FeTe0.55Se0.45 (Tc~14 K) [5].

*This work done in collaboration with Yaomin Dai, Qiang Li, Jinsheng Wen, Zhijun Xu, Genda Gu, Ricardo Lobo, and Ana Akrap; work supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-98CH10886.

[1] A. V. Puchkov, D. N. Basov, and T. Timusk, J. Phys.: Condens. Matter 8, 10049 (1996).
[2] S. Raghu et al., Phys. Rev. B 77, 220503(R) (2008).
[3] D. Wu et al., Phys. Rev. B 81, 100512 (2010).
[4] Y. M. Dai et al., Phys. Rev. Lett. 111, 117001 (2013).
[5] C. C. Homes et al., Phys. Rev. B 81, 180508(R) (2010).

번호 제목 날짜 조회 수
공지 <12/8(Thu.) 11:00am>노벨상 소개 강연 - 2016년 노벨 물리학상: 위상 응집 물리의 탄생 2016.11.28 1089796
456 <6/15(Fri.) ~ 16(Sat.)> Formation of first star and galaxy, Gravitational waves from Binary Mergers of Sub-Solar Mass Dark Black Holes 2018.06.12 75684
455 <6/3(수) 오후4:30분> The Quest for Dark Matter: Discovering Its Nature Underground? 2015.05.28 75750
454 <May.15(Wed.)> Three-body problems and three-body forces in Classic and Quantum Systems 2019.05.08 75807
453 <12/21>나노 광전소자 2006.12.31 75817
452 <3/19> 고자기장 하에서 반도체 양자구조의 광전이 특성 2014.03.13 75957
451 <Nov. 25(Wed.) 4:30 PM> Present and Future of OLED 2015.11.19 75963
450 <9/7> On Dark Matter and its indirect detection with box-shaped gamma-rays 2012.09.05 75971
449 <12/12> 나노물리학과 컴퓨터 시뮬레이션 2008.12.08 76126
448 <3/28> Nanoscale Physics related to Resistance Switchings &Its Applications to Resistance RAM 2008.03.24 76219
447 <10/28> Magneto-electric response of multiferroic chiral magnets 2013.10.21 76330
446 <4/6> Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment 2012.04.04 76687
445 <4/7> Structure and Dynamics of Complex Networks 2006.04.03 76733
444 <11/14> 한방의료기기에서 나노소자의 활용 2008.11.11 76865
443 <12/17(Tue.)> Nuclear spectroscopy with low energy reaction thermal neutrons in ILL 2019.12.17 76913
442 <1/16> Higgs-to-diphoton rate in type II seesaw models 2013.01.11 76922
441 <Nov.20(Wed.)>At the End of Space and Time: Imaging the Black Hole in M 87 2019.11.14 76952
440 <Dec. 9(Wed.) 4:30 PM>Direct detection of dark matter at Underground 2015.12.03 77048
439 <10/31> 학부생을 위한 입자물리학및 끈이론 소개 2008.10.27 77085
438 <10/5> 국제핵융합로 프로젝트 및 이와 관련된 초전도 연구 2007.10.01 77271
437 <4/24> How to introduce the monopole in quantum mechanics? 2012.04.23 77420